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ABSTRACT 
The application of optical superresolution technique to measuring small particles said to be secondary light sources with 

various scales of sizes - from micrometers to nanometers is discussed. The concept of a separate nanosized object and 
theoretical approach to recognition of its sizes through the mathematical continuation of the visible angular spectrum of 
vector plane waves is suggested. 
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1. INTRODUCTION. IDEA AND MODEL 
The to-day status of science and technology in various fields is often may be characterized as a world of very precisely 

defined dimensions. A great amount of tasks concern small and extra small elements and structures namely photomasks 
and compact optoelectronic devices, nanopowder particles, nanosubstrates, tools for micro and laser surgery, biomolecules, 
viruses, etc. In all these cases the urgency of the use of optical research methods is doubtless. However it is evident that the 
far-field optical microscopy offers no direct measuring technique in nanometric scale and it is necessary to take alternate 
means such as electron scanning microscopy techniques. Some of tasks in question accommodate the use of the latter 
methods but there are cases in which their application is hardly reasonable and even impossible. This concerns objects 
which cannot be observed with the use of electron irradiation for example biological objects accommodating only visual 
electromagnetic field effects, being investigated in vivo, interesting only by their optical properties, etc. So visual optics is 
still the reasonable choice but with request of new opportunities. 

It is important that the light scattering on extra small material structures may be used according to the Babinet’s 
principal for investigating amplitude and phase effects imposed by these structures. Hence the possibility appears of the 
knowledge of their dimensions as parameters of some secondary sources of light. 

Nevertheless such approach inevitably will meet a great lack of necessary information for restoration subwavelength 
characteristics. Here the superresolution technique becomes very important which means the use of iterative processes and 
investigation of their opportunities. The next problem is a rigorous concept of diffraction on mesoscopic elements at high 
angles. In this case the total electromagnetic energy is distributed between the propagating and evanescent parts or in other 
words far and near fields. 

There are theoretical and mathematical difficulties of far- and near-field phenomena representation in one model in 
terms of linear reversible equations. The suggested mathematical modeling is based on the superposition of solutions of 
Maxwell's equations enclosing linearly polarized vector plane waves in real  and complex  forms as functions of spatial 
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Here u u0 0ij
R

ij
E,  are the complex vector amplitudes, real k ij  and complex $k ij  denote the wave vectors corresponding to the 

space frequencies below and higher than 
1
λ

 , p0  is the polarization status vector. 

The expression for the entire near-field distribution close to the investigated light source will be: 

( )U r B u r( ) = ∑∑ ij
ji
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plane waves. 

The use of vector representation of the light complex amplitude leads to simplified calculation procedures for rigorous 
far-field intensity distribution simulation. If the vector expressions for both types of plane waves are substituted into the 

sum (1) with taking into account that k ij  and $k ij  are the functions of spatial frequencies ( )ν νx y,  it will be possible to 

use the digital Fourier transform to calculate all the components of this sum. The description of the vector amplitude 
distribution itself may be defined in the following form: U r S u( ) = ⋅ 0 , where S − is the matrix model of the light source 
containing its dimensions, u0 −  vector amplitude of an incident linearly polarized plane wave with the wave vector k 00 . 
Using this matrix expression together with the sum (1) and vector amplitudes of plane waves the following matrix equation 
may be obtained: 

( )[ ]S P B= F ij x y ijν ν, ,          (2) 

where F  − direct Fourier transform operator, Pij  − a set of matrix operators of rotations according to the assumed 

definition of a plane wave vector amplitude, B ij −  a set of matrix coefficients,  indices ij  denote that the Fourier 

transform is taken with respect to the digitized spatial frequencies. 

The matrix expression for the far-field light amplitude distribution parameters inverse to (2) is 

( ) [ ]B P Sij ij x y F= ⋅− −` ,1 1ν ν ,          (3) 

where S  is the mentioned matrix of the secondary light source (aperture) parameters, ( )Pij x y
−1 ν ν, − a set of inverse 

matrix operators of rotations, F −1  − the inverse Fourier transform operator. If the amplitude of the far-field light 
distribution is known (which means that we know B ij ) it will be possible to restore the encoded in the matrix S  initial 

light field distribution dimensions by the matrix formula similar to (2). This mathematical model is an alternative to the 
well-known MMP-method1 based on the superposition of spherical and dipole solutions of Maxwell's equations. Principal 
advantage of this model is the use of a set of reversible Fourier transformations as a nucleus of the procedure. 

2. A THEORETICAL APPROACH TO MEASURINGS 
To define dimensions of a subwavelength aperture we firstly have to register the far-field intensity within the solid angle 

of at least ±90° and after that obtain the distribution of an amplitude. Here the transformation of intensity into amplitude is 
suggested and after that the problems of the use of “insufficient” information are discussed. 

Therefore the vector amplitude of the registered light may be described as follows: 
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where p0  is the polarization status vector, 
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containing the square roots of the registered values of the angular intensity distribution. 

This equation is correct in case of linear polarization and that the electric vector lies in the plane of a receiver2. The 
latter may be provided if the receiver is set at a proper angle while scanning or the investigated field is registered in the 
focal plane of a microobjective with high numerical aperture. 

Now for the restored matrix ′S we may get the following expression: 

[ ]′ = ⋅ ′S P BF ij .           (5) 

The restored dimensions ′S may differ greatly from the initial ones S  because of the absence of direct information 
about the near-field distribution. The difference increases as the aperture sizes diminish. This means that the Fourier 
transform is applied to a part of the space frequencies spectrum and consequently the restored model of the aperture should 
not be correct.  To solve the task of restoration an additional mathematical procedure is required. 

In this stage of the work we have investigated some approaches how to construct the process of analytical continuation 
of the Fourier spectrum if its small part is known. Our problem differs from the most of well known superresolution 
examples by the fact that we don’t know the input i.e. the aperture at all but only the part of its spectrum. In this case we 
have to make the feedback only in the spectrum space which gives an extremely ill-posed task. To make the task more 
steady we should use a multilevel procedure and take different functions for continuation on each level. The analysis of the 
problem has shown that better results may be obtained by the use of Fourier transform eigenfunctions which in one-
dimensional space are known and tabulated as wave prolate (spheroidal) functions3,4,5. Unfortunately in the two-
dimensional space these functions have not ever been used and their analytical expressions are unknown. As even for one 
dimension the wave prolate functions are extremely hard to be calculated4 a new technique has been elaborated in order to 
make it possible to use rather effective mathematical basis for Fourier spectra continuation. 

This technique encloses two steps. The first step is the partial continuation of the spectrum up to the first zeros by the 
use of orthogonal polynomials. The second step is the iterative continuation procedure of the spectrum upon the rest sample 
region using the modified Gerchberg’s6 approach. In these two steps the idea of wave prolate functions is realized not 
directly but through numerical algorithm which offers to obtain the optimum expansion of the spectrum by orthogonal 
Zernike polynomials and their analytical continuation beyond the unit circle - infinite functions with finite spectra. It is 
somewhat the generalization of  two dimensional wave prolate functions with double orthogonality. 

3. THE CONTINUATION TECHNIQUE BEYOND THE VISIBLE REGION AND PROBLEMS OF 
SUPERRESOLUTION. 

The process of continuation itself usually is being built as the process of recognition of the input with a sequence of 
feedback procedures. The real examples of such kind deal either with the analytical continuation of the spectrum on the 
basis of the sample (Shannon’s) theorem7 or with various iterative procedures6. The mentioned theoretical approach with 
the use of one dimensional wave prolate functions with double orthogonality usually is being applied to antenna currents 
distributions. In case of two dimensions which is in optics this approach meets with the problem of two-dimensional basis 
construction and an impracticable amount of calculations. 



Both approaches - the sample theorem and iterative procedures would give satisfactory results with greater or less 
probability but in our case it is necessary to obtain the stable information about aperture sizes. The better stableness from 
the use of functions with double orthogonality cannot be in question. In this work a new analytical-iterative procedure is 
offered. This procedure involves a step of polynomial expansion which is realized as Zernike polynomial extrapolation with 
new approach to calculation of polynomials beyond their orthogonality region with high accuracy. This step gives a set of 
orthogonal polynomial expansion coefficients which form a numerical model of the visible part of the spectrum strongly 
related with the model of the invisible one. With these coefficients and if the analytical expressions of the functions with 
double orthogonality with two dimensions were known and suitable for computing the task of restoration of subwavelength 
sized apertures would be solved at once. Unfortunately there are no simple analytical expressions suitable for computing to 
continue the spectrum in the invisible region. That is why it is reasonable to carry out a sequence of approximations in order 
to find the function mostly close to the part of the spectrum already defined. In this approach the use of sample functions in 
an iterative process has a sense of orthogonal expansion of the spectrum and should be performed more surely. The 
calculations taken on Pentium-166 has shown that this idea was quite correct. 

After processing of the registered intensity ′I  and transformation of angular ( )θ θx y,  coordinates into spatial 

frequencies ( , )ν νx y  the visible part of the Fourier spectrum of the initial aperture f Bfv
x y x y( , ) ( , )ν ν ν ν=  is defined. 
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cutting off may be greater if smaller solid angle or numerical aperture of a microobjective are used. 

The mathematical equations showing the process of continuation may be given as follows: 

the first step (Zernike extrapolation) - 

f P Cv
x y ij x y ij

ji

+ + + + += ∑∑( , ) ( , )ν ν ν ν ,         (6)  

where Cij   are the Zernike polynomial expansion coefficients defined from the equation 
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Here Pij x y( , )ν ν  are the Zernike polynomials orthogonal on the region ( )− ≤ + ≤
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are the coordinates of points in the region greater than the initial visible space. The dimensions of this new region may be 
1.5, 2., 3 and more times larger. In order to maintain the correctness of this task a new approach to the polynomial 
extrapolation is suggested. The polynomials should not be conventionally Zernike but have to be built as special orthogonal 
polynomials with variable properties of orthogonality. Such polynomials were elaborated in the St.-Petersburg Institute of 
Fine Mechanics and Optics in 1983 in order to enrich the properties of Zernike polynomials by new numerical advantages8. 
The coefficients Cij  may be defined from (7) which is in the visible region by the very stable standard Gram-Schmidt 

procedure. 

The result of the first step is the extended “visible” region in order to run the superresolution procedure under promoted 
conditions. Consequently one of the well-known iterative procedures9,10 may be taken to finish the continuation. Thus the 
second step is formulated as follows: 

a) ( ) ( )[ ]s x y F fe
p v

x y( , ) ,= ν ν ,          (8) 



where ( )( )s x ye
p ,  is the preliminary estimation of the input. This estimation is being analyzed in order to find the smallest 

region Ωs  enclosing all the points where the values of the signal exceed a taken numerical threshold s0 . The signal 
( )( )s x ye

p ,  within  Ωs  is denoted as ( )Qse
p and the first estimation of the spectrum will be 

( ) ( ) ( )[ ]f F Qs x ye x y e
pν ν, ,= −1 ;          (9) 
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s
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where ( ) ( )s x ye
s ,  is the secondary estimation of the input, ( )ν νx y

− −,  define the points of the “visible” part of the 

spectrum (polynomial extrapolation) and ( )ν νx y
+ +,  define the points of the rest area. Then ( ) ( )s x ye

s ,  should be 

substituted instead of ( )( )s x ye
p ,  into (9) and the iterative cycle is to be continued. 

The process is going on until the value of  
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becomes less than a chosen tolerance ε  which usually depends on the numerical threshold s0  and ( )fm x yν ν− −,  being the 

spectrum of the m -th  estimation of the input. 

This approach has been tested for various apertures with different dimensions and for various sets of orthogonal 
polynomials in order to optimize the process. The numerical calculations have shown that this technique may give very 
promising results. 

4.  NUMERICAL RESULTS 
The suggested technique is illustrated by the examples of sizes recognition where the final error is quite negligible while 

the spectrum continuation is too long.  The figures 1 and 9 show the taken initial apertures. The figures 3,4 and 11,12 show 
the primary extension of the spectra by Zernike polynomial extrapolation - too long from the traditional point of view. The 
horizontal axis here is marked in degrees corresponding to especially spatial frequencies that is why only for the visible 
region there are realistic angular values. The figures 5,6 and 13,14 show the final spectra obtained without and after the use 
of preliminary polynomial extrapolation. The figures 7,8 and 15,16 display restored apertures without and after polynomial 
extrapolation and figures 2,10 refer to uncharacterized restored shapes without any iteration. 

It is important that what we can see on figs. 3 and 11 is a very short part of the whole Fourier spectrum. This is the only 
data that may be registered and we have to take all the necessary information out of it. The following polynomial extension 
is surprisingly 4 times larger than the visible region and provides much better initial conditions for the finishing iterative 
continuation. 

We may surely say that the suggested approach is quite promising to construct a new measuring process. The next step 
of this work is to understand the noise sensitivity and conditioning degree of this task being applied to realistic data. 



 

 

  

Fig. 1 Aperture 150×150 nm2 

 

Fig. 2 Restored aperture without iterations 

 

 
 

Fig. 3 The cross sections of the visible part of the spectrum 
(scaled within ± 142°). 

Fig. 4 The cross sections of the Zernike extrapolation 
beyond the visible region (scaled within ± 568°). 



 

 

 
 

Fig. 5 Final spectrum without polynomial extrapolation (in 
relative frequency coordinates) 

Fig. 6 Final spectrum after polynomial extrapolation (in 
relative frequency coordinates) 

 

  

Fig. 7 Restored aperture without Zernike extrapolation Fig. 8 Restored aperture with Zernike extrapolation and the 
following iterative continuation  

 



 

 

  

Fig. 9 Aperture 150×250 nm2 Fig. 10 Restored aperture without iterations 

 

 
 

Fig. 11 The cross sections of the visible part of the spectrum 
(scaled within ± 142°).  

Fig. 12 The cross sections of the Zernike extrapolation 
beyond the visible region (scaled within ± 568°). 

 

 

 



 

 

  

Fig. 13 Final spectrum without polynomial extrapolation (in 
relative frequency coordinates) 

Fig. 14 Final spectrum after polynomial extrapolation (in 
relative frequency coordinates) 

 

  

Fig. 15 Restored aperture without Zernike extrapolation Fig. 16 Restored aperture with Zernike extrapolation and the 
following iterative continuation  

 



 

5. CONCLUSION 
One of the important results of this work is that the inverse task is being solved by a set of standard algorithms - Fast 

Fourier Transform (FFT), Matrix Operations, Gram-Schmidt Orthogonalization. The use of such procedures greatly 
simplifies the calculations and at the same time diminishes the probable error. That is why there is a great certainty of 
successful real data processing. It is also favorable that orthogonal polynomials may accommodate an errorless long 
extrapolation provided that they are in a proper use. The whole process offers to define a very capacious information of the 
initial object or boundary structure. 

Moreover it should be noted that such model and technique offers grounds of thoughts both in extra sized measurements 
and in optical image processing at all especially for unresolved structures and we may quite assume that the limits of optical 
resolution are still far away. 

6.  AKNOWLEDGEMENTS 
The authors wish to thank G. Sepold, W. Jüptner, W. Osten and S. Seebacher (Bremen Institute of Applied Beam 

Technology), Prof. M. Libenson and Dr. V. Voronin (Vavilov State Research Center) for useful and illuminating 
discussions. 

7. REFERENCES 
1. L.Novotny, D.W.Pohl, P.Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture 

scanning near-field optical microscope”, J. Opt. Soc. Am. A., Vol. 11, No. 6, pp. 1768-1779, 1994. 
2. Chr. Obermüller and Kh. Karrai “Far-field characterization of diffracting circular apertures”, Appl. Phys. Lett., Vol. 67, 

No. 23, pp. 3408-3410, 1995. 
3. Slepian D., “Prolate spheroidal wave functions, Fourier analysis and uncertainty.-IV. Extensions to many dimensions; 

generalized prolate spheroidal functions”, Bell  Syst. Techn. J., Vol. 44, No. 6, pp. 3009-3057, 1964. 
4. Bowkamp C.J. “On Spheroidal Wave Functions of Order Zero”, J. Math. Phys., Vol. 26, pp. 79-92, 1957. 
5. Stratton J.A., Morse P.M., Chu L.J., Little J.D.C. and  Corbato  F.J., Spheroidal wave functions, N.Y.: John Wiley and 

Sons, Inc., 1956. 
6. Bates R.H.T. and McDonnell, Image Restoration and Recognition, Chs. 2-3, Oxford: University Press, 1986. 
7. Harris J.L. “Diffraction and Resolving Power”, J. Opt. Soc. Am., Vol. 54, No. 7, pp. 931-936, 1964. 
8. Voznessenski N.B. “Orthogonal polynomials to represent aberrations of optical systems with arbitrary kind of 

symmetry”, Izvestia VUZOV - USSR, Priborostroenie, No. 5, 1982. 
9. Rushforth C.K. and Harris R.W. “Restoration, Resolution and Noise”, J. Opt. Soc. Am., Vol. 58, No. 4, , pp. 539-545, 

1968. 
10. A.J. den Dekker and A. van den Bos, “Resolution: a survey”, J. Opt. Soc. Am., Vol. 14, No. 3, , pp. 547-557, 1997. 
 


